Section 8.3 Vectors in the Plane

Objective: In this lesson you learned how to write the component forms of vectors, perform basic vector operations, and find the direction angles of vectors.

I. Introduction (Page 615)

A directed line segment has an ____________ and a ____________.

The magnitude of the directed line segment \(\overrightarrow{PQ} \), denoted by ____________, is its ____________. The magnitude of a directed line segment can be found by . . .

II. Component Form of a Vector (Page 616)

A vector whose initial point is at the origin \((0, 0)\) can be uniquely represented by the coordinates of its terminal point \((v_1, v_2)\). This is the ________________, written \(\mathbf{v} = \langle v_1, v_2 \rangle \), where \(v_1\) and \(v_2\) are the ___________ of \(\mathbf{v}\).

The component form of the vector with initial point \(P = (p_1, p_2)\) and terminal point \(Q = (q_1, q_2)\) is

\[\overrightarrow{PQ} = \langle q_1 - p_1, q_2 - p_2 \rangle = \mathbf{v}. \]
The **magnitude** (or length) of \(\mathbf{v} \) is:

\[
\|\mathbf{v}\| = \sqrt{\quad} = \sqrt{\quad}
\]

Example 1: Find the component form and magnitude of the vector \(\mathbf{v} \) that has \((1, 7)\) as its initial point and \((4, 3)\) as its terminal point.

III. Vector Operations (Pages 617–619)

In operations with vectors, numbers are usually referred to as ________. Geometrically, the product of a vector \(\mathbf{v} \) and a scalar \(k \) is . . .

If \(k \) is positive, \(k \mathbf{v} \) has the ________ direction as \(\mathbf{v} \), and if \(k \) is negative, \(k \mathbf{v} \) has the ________ direction.

To add two vectors geometrically, . . .

This technique is called the __________________________ for vector addition because the vector \(\mathbf{u} + \mathbf{v} \), often called the __________________________ of vector addition, is . . .

Let \(\mathbf{u} = \langle u_1, u_2 \rangle \) and \(\mathbf{v} = \langle v_1, v_2 \rangle \) be vectors and let \(k \) be a scalar (a real number). Then the sum of \(\mathbf{u} \) and \(\mathbf{v} \) is the vector:

\[
\mathbf{u} + \mathbf{v} = \langle \quad, \quad \rangle
\]

and the scalar multiple of \(k \) times \(\mathbf{u} \) is the vector:

\[
k \mathbf{u} = \langle \quad, \quad \rangle
\]

Example 2: Let \(\mathbf{u} = \langle 1, 6 \rangle \) and \(\mathbf{v} = \langle -4, 2 \rangle \). Find:

(a) \(3 \mathbf{u} \)

(b) \(\mathbf{u} + \mathbf{v} \)
Let \(\mathbf{u}, \mathbf{v}, \) and \(\mathbf{w} \) be vectors and \(c \) and \(d \) be scalars. Complete the following properties of vector addition and scalar multiplication:

1. \(\mathbf{u} + \mathbf{v} = \) __________
2. \((\mathbf{u} + \mathbf{v}) + \mathbf{w} = \) __________
3. \(\mathbf{u} + \mathbf{0} = \) __________
4. \(\mathbf{u} + (-\mathbf{u}) = \) __________
5. \(c(d\mathbf{u}) = \) __________
6. \((c + d)\mathbf{u} = \) __________
7. \(c(\mathbf{u} + \mathbf{v}) = \) __________
8. \(1(\mathbf{u}) = \) __________
9. \(0(\mathbf{u}) = \) __________
10. \(\|c\mathbf{v}\| = \) __________

IV. Unit Vectors (Pages 619–620)

To find a unit vector \(\mathbf{u} \) that has the same direction as a given nonzero vector \(\mathbf{v} \), . . .

In this case, the vector \(\mathbf{u} \) is called a __________

Example 3: Find a unit vector in the direction of \(\mathbf{v} = \langle -8, 6 \rangle \).

Let \(\mathbf{v} = \langle v_1, v_2 \rangle \). Then the standard unit vectors can be used to represent \(\mathbf{v} \) as \(\mathbf{v} = \) __________, where the scalar \(v_1 \) is called the __________ and the scalar \(v_2 \) is called the __________. The vector sum \(v_1\mathbf{i} + v_2\mathbf{j} \) is called a __________ of the vectors \(\mathbf{i} \) and \(\mathbf{j} \).

Example 4: Let \(\mathbf{v} = \langle -5, 3 \rangle \). Write \(\mathbf{v} \) as a linear combination of the standard unit vectors \(\mathbf{i} \) and \(\mathbf{j} \).

Example 5: Let \(\mathbf{v} = 3\mathbf{i} - 4\mathbf{j} \) and \(\mathbf{w} = 2\mathbf{i} + 9\mathbf{j} \). Find \(\mathbf{v} + \mathbf{w} \).
V. Direction Angles (Page 621)

If \(\mathbf{u} \) is a unit vector and \(\theta \) is its direction angle, the terminal point of \(\mathbf{u} \) lies on the unit circle and
\[
\mathbf{u} = \langle x, y \rangle = \text{______________} = \text{______________}
\]

Now, if \(\mathbf{v} \) is any vector that makes an angle \(\theta \) with the positive \(x \)-axis, it has the same direction as \(\mathbf{u} \) and
\[
\mathbf{v} = \text{______________} = \text{______________}
\]

If \(\mathbf{v} \) can be written as \(\mathbf{v} = ai + bj \), then the direction angle \(\theta \) for \(\mathbf{v} \) can be determined from \(\tan \theta = \text{__________} \).

Example 6: Let \(\mathbf{v} = -4i + 5j \). Find the direction angle for \(\mathbf{v} \).

VI. Applications of Vectors (Pages 622–623)

Describe several real-life applications of vectors.

What you should learn

- How to find the direction angles of vectors
- How to use vectors to model and solve real-life problems

Homework Assignment

Page(s)

Exercises