Section 5.2 Logarithmic Functions and Their Graphs

Objective: In this lesson you learned how to recognize, evaluate, and graph logarithmic functions.

I. Logarithmic Functions (Pages 401–402)

The logarithmic function with base \(a \) is defined as

\[\log_a x \] , for \(x > 0 \) and \(0 < a \neq 1 \), if and only if \(x = a^y \).

The logarithmic function with base \(a \) is the ____________ of the exponential function \(f(x) = a^x \).

The equation \(x = a^y \) in exponential form is equivalent to the equation ____________ in logarithmic form.

When evaluating logarithms, remember that a logarithm is a(n) ______________. This means that \(\log_a x \) is the ______________ to which \(a \) must be raised to obtain ________.

Example 1: Use the definition of logarithmic function to evaluate \(\log_5 125 \).

Example 2: Use a calculator to evaluate \(\log_{10} 300 \).

Complete the following properties of logarithms:

1) \(\log_a 1 = \) _________
2) \(\log_a a = \) _________
3) \(\log_a a^x = \) _________ and \(a^{\log_a x} = \) _________
4) If \(\log_a x = \log_a y \), then ____________.
Example 3: Solve the equation $\log_7 x = 1$ for x.

II. Graphs of Logarithmic Functions (Pages 403–404)

For $a > 1$, is the graph of $y = \log_a x$ increasing or decreasing over its domain? ________________

For the graph of $y = \log_a x$, $a > 1$, the domain is ________________, the range is ________________, and the intercept is ________________.

Also, the graph has ________________ as a vertical asymptote. The graph of $y = \log_a x$ is a reflection of the graph of $y = a^x$ about ________________.

Example 4: Sketch the graph of the function $f(x) = \log_3 x$.

III. The Natural Logarithmic Function (Pages 405–406)

Complete the following properties of natural logarithms:

1) $\ln 1 = \underline{}$
2) $\ln e = \underline{}$
3) $\ln e^x = \underline{}$ and $e^{\ln x} = \underline{}$
4) If $\ln x = \ln y$, then ________________.

Example 5: Use a calculator to evaluate $\ln 10$.
Example 6: Find the domain of the function \(f(x) = \ln(x + 3) \).

IV. Applications of Logarithmic Functions (Page 407)
Describe a real-life situation in which logarithms are used.

Example 7: A principal \(P \), invested at 6% interest and compounded continuously, increases to an amount \(K \) times the original principal after \(t \) years, where \(t \) is given by \(t = \frac{\ln K}{0.06} \). How long will it take the original investment to double in value? To triple in value?

What you should learn
How to use logarithmic functions to model and solve real-life applications

Additional notes

Homework Assignment
Page(s)
Exercises