Chapter 5 Exponential and Logarithmic Functions

Section 5.1 Exponential Functions and Their Graphs

Objective: In this lesson you learned how to recognize, evaluate, and graph exponential functions.

Important Vocabulary Define each term or concept.

Algebraic functions
Transcendental functions
Natural base e
Continuous compounding

I. Exponential Functions (Page 390)

The exponential function f with base a is denoted by a^x, where $a > 0$, $a \neq 1$, and x is any real number.

Example 1: Use a calculator to evaluate the expression $5^{3/5}$.

II. Graphs of Exponential Functions (Pages 391–393)

For $a > 1$, is the graph of $y = a^x$ increasing or decreasing over its domain? ________________

For $a > 1$, is the graph of $y = a^{-x}$ increasing or decreasing over its domain? ________________

For the graph of $y = a^x$ or $y = a^{-x}$, $a > 1$, the domain is ________________, the range is ________________, and the intercept is ________________. Also, both graphs have ________________ as a horizontal asymptote.
Example 2: Sketch the graph of the function \(f(x) = 3^{-x} \).

![Graph of \(f(x) = 3^{-x} \)]

III. The Natural Base \(e \) (Page 394)

The natural exponential function is given by the function \(e^x \).

Example 3: Use a calculator to evaluate the expression \(e^{3/5} \).

IV. Applications of Exponential Functions (Pages 395–397)

After \(t \) years, the balance \(A \) in an account with principal \(P \) and annual interest rate \(r \) (in decimal form) is given by the formulas:

For \(n \) compoundings per year: _______________

For continuous compounding: _______________

Example 4: Find the amount in an account after 10 years if $6000 is invested at an interest rate of 7%,
(a) compounded monthly.
(b) compounded continuously.

Homework Assignment

Page(s)

Exercises